| JudulANALISIS KESTABILAN TITIK KRITIS MATEMATIKA PENYEBARAN PENYAKIT FLU SINGAPURA (HAND, FOOT, AND MOUTH DISEASE) DENGAN INTERVENSI VAKSIN |
| Nama: SALMAN |
| Tahun: 2025 |
| Abstrak Hand, Foot, and Mouth Disease (HFMD) merupakan infeksi virus, disebabkan berbagai jenis enterovirus, diantaranya Coxsackievirus A16 (CVA16) dan Enterovirus 71 (EV71). Sebagai upaya pengendalian, vaksinasi dipandang sebagai strategi efektif. Dalam studi ini, dirancang kembali model matematika penyebaran HFMD dengan intervensi vaksinasi, dan direpresentasikan dalam model SIV_1 V_2. Model dinyatakan dalam sistem persamaan diferensial nonlinier yang memiliki dua titik kritis, yakni titik bebas penyakit dan titik endemik. Kajian terhadap kestabilan kedua titik kritis tersebut dilakukan dengan menggunakan metode linearisasi dan kriteria Routh-Hurwitz. Titik bebas penyakit eksis tanpa syarat dan stabil jika bilangan reproduksi dasar (R_0 )<1>1 terpenuhi. Hal ini memberikan arti peran tingkat vaksinasi pertama sangat penting untuk mencapai kondisi bebas penyakit. Hal tersebut tergambarkan dalam simulasi di mana intervensi vaksinasi memberikan kontribusi secara signifikan dalam menekan laju penyebaran HFMD. Kata Kunci : Hand, Foot, and Mouth Disease (HFMD), Model Matematika, Vaksinasi, Kestabilan, Metode Routh-Hurwitz |